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Abstract

In this essay we will demonstrate how the snark arose from the work of mathe-
maticians studying the four-colour problem, note their rarity and briefly explore
their construction.
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Chapter 1

From map to snark

1.1 Introduction
We begin our story with the Four Colour Problem that, in its hundred-year
intractability, played a significant part in driving the development of graph
theory as a mathematical field. The problem was considered remarkable because
it could “be explained in five minutes by any mathmatician to the so-called man
in the street and at the end of the explanation, both would understand it, but
neither would be able to solve it” [3].

This is probably still the case for many mathematicians today, since the
accepted proof by Appel & Haken in 1977 was achieved by reducing the prob-
lem to hundreds of classes of graph “by hand” and using computers to analyse
hundreds of thousands of individual cases [8, 9]. Much of the literature relating
to graph theory (ie. all that written before 1977) refers to the “Four Colour
Problem”. However, due to Appel & Haken, it has been established that we
may properly colour any map using four colours and as such may happily refer
to the “Four Colour Theorem”.

In this chapter we will explain, with simplified proof, why the statement
that there are no planar snarks is equivalent to the statement of the Four Colour
Theorem. Saaty [5] offers a good overview (including a timeline from 1852–1972)
of many other equivalent statements of the Four Colour Theorem.

Note. In this chapter some effort is made to make clear to the reader whether
we are discussing edge or vertex colourings. As such, both shall occasionally
be referred to in their more verbose form, where the former is (proper) k-edge
colouring and the latter is (proper) k-vertex colouring.

3



1.2 From map to graph
The problem that is the subject of the Four Colour Theorem (which we subse-
quently may abbreviate to 4CT) is defined in terms of maps, that is drawings
that represent the division of the surface of a sphere into regions. This gives us
an initial definition.

Definition 1.2.1. Given a planar map, say M , the dual graph of M , written
D(M) = G is the graph that has a vertex for every region of M and an edge
between two vertices if and only if the corresponding regions share a border.

Whitney defines the dual graph or dual representation as the graph obtained
from a planar map by “marking in each region of the map a point, which will
be a vertex of the graph” and “across each boundary line of the map drawing
a line connecting the vertices in the two regions the boundary separates, which
will form an edge of the graph” [2]. According to Saaty [5], it follows from
Whitney’s definition of the dual graph that if the map M is planar, its dual
graph D(M) = G is also planar. From here we may begin to discuss the problem
in terms of graph theoretic objects we know about from eg. the notes.

1.3 Refining the search
Before using Harary [4] to show directly the equivalence we desire, we will give
a flavour of the thinking mathematicians were using in their attempts at proof
for the 4CT. Both Tait and Whitney reduce the problem such that they need
only consider triangular graphs. That is, a graph in which every face is a
triangle. In their original papers, Tait describes a “diagram [with] three-sided
compartments” and 50 years later Whitney describes a “graph composed of
elementary triangles”.

In his 1880 paper [1] Tait introduces a scheme where vertices are “intruded”
into a triangular graph G such that it becomes a square graph G′ (a graph
where all faces have four sides), where G′ is properly 2-vertex colourable. Since
triangles have three sides, there is at least one further way of intruding vertices
into the edges of G to produce a different square graph G′′ which can also be
properly 2-vertex coloured. Overlaying G′ and G′′ produces a vertex colouring
for G that requires no more than 4 colours.

We will use Liu’s 1968 presentation [3] of Tait’s proof1 here. Liu’s formula-
tion is slightly different and deals with a particular type of edge-colouring rather
than Tait’s vertex intrusion, but the ideas are similar despite the difference in
language.
1Unfortunately I could only get the abstract for Tait’s paper, so am not privy to the full proof
or “rules laid down for carrying out [intrusion] operations”.
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Definition 1.3.1. The triangular transformation of a planar graph G,
T (G) = G′ is obtained by dividing all the nontriangular faces of G into tri-
angular faces. We can do this by introducing a vertex v in the centre of each
nontriangular face and adding edges joining v to each of the vertices defining
the face. G′ is a triangular graph.

Example 1.3.1. The triangular transformation of C5 = , can be written

T (C5) = . For C4 = , we can write T (C4) = , etc.

If a proper 4-vertex colouring of T (G) exists, then clearly this colouring is also
a proper k-vertex colouring of G with k ≤ 4. As such, at least for the remain-
der of this section, we need only consider triangular graphs (or the triangular
transformations of nontriangular graphs).

Definition 1.3.2. We call a triangular graph G triangle-edge colourable
if the edges of G can be coloured with three colours such that the edges of
each face of G feature all three of these colours. We call such a colouring a
triangle-edge colouring.

Example 1.3.2. An example of a triangular graph with a triangle-edge colour-
ing on colours {α, β, γ}.

α

β

γ

α

γ

β

β

γα

β

α

γ

Remark. A triangle-edge colouring is quite different to a 3-edge colouring, as
we can see above, since here we consider the edges of each face independently.
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Theorem 1.3.1. (Tait in Liu [3] p. 253) A triangular graph G = (V,E) has a
proper 4-vertex colouring if and only if it is triangle-edge colourable.

Proof. Suppose first that φT : E → {α, β, γ} is a triangle-edge colouring of G,
and consider the subgraph H1 = (V,E1) where E1 is the set of edges e1 ∈ E
such that φT (e1) ∈ {α, β}. Since G is a triangular graph, our construction
of H1 means it will be a square graph and there will exist a proper 2-vertex
colouring of H1, say φH1 : V → {A,B}. We can construct a similar subgraph
H2 = (V,E2) where E2 is the set of edges e2 ∈ E such that φT (e2) ∈ {α, γ}.
Again, by construction we know there exists a proper 2-vertex colouring of H2,
let’s say φH2

: V → {u, v}.
We can construct a function on the whole of G where each vertex is mapped

to one of the four “mixed” colours in {A,B} × {u, v} by “superimposing” the
vertex colourings φH1 and φH2 . Such a can be written φ : V → {A,B} × {u, v}
where φ(x) = (φH1

(x), φH2
(x)) for all x ∈ V .

To see that the function φ is a proper 4-vertex colouring, suppose for x, y ∈ V
that x and y are the endvertices of some edge e ∈ H2 such that φH1

(x) = φH1
(y).

By construction, we know that φH2
(x) 6= φH2

(y) and it follows φ(x) 6= φ(y).
This is true for any pair of adjacent vertices in G and hence φ is a proper
4-vertex colouring of G. As such, G is properly 4-vertex colourable as required.

For the converse, see Liu [3] (p. 253).

�

Example 1.3.3. Using the triangular graph G and its triangle-edge colouring
defined in Example 1.3.2, we construct example H1 and H2 subgraphs as de-
scribed above, writing (where dashed lines below denote edges removed from G)

for H1, α
β

αβ
β

α

β

α

and for H2, αγ

α

γ

γα

α

γ

.

We can also write proper 2-vertex colourings φH1
and φH1

described above as,

for φH1
,

B

A
B

A

BB

and for φH1
,

u

vv

u

vu

.
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To complete the example we write the “superimposed” proper 4-vertex colour-
ing, which we called φ, on the graph from Example 1.3.2 as

Bu

Bv
Av

Au

BuBu

,

where we write eg. Au instead of (A, u) for legibility.

1.4 Arriving at the snark
In the previous section, we saw how mathematicians were able to find differ-
ent ways of considering the map colouring problem by formulating equivalent
problems in terms of graph theory. In this spirit, we will now demonstrate the
promised result by using a theorem of Harary as a (somewhat lengthy) lemma
and arrive at the subject of this essay, the snark.

Lemma 1.4.1. (Harary [4] p. 132) The 4CT is equivalent to the statement that
every bridgeless planar cubic graph is properly 4-vertex colourable (henceforth
4-colourable).

Proof. We have seen (by Definition 1.2.1) that the 4CT is equivalent to the
statement that every planar graph is 4-colourable. Considering the map whose
dual graph has a bridge, we note that contracting (identifying the endvertices
of) the bridge in the dual graph does not affect the number of regions or their ad-
jancency in the corresponding map. As such we know that the 4CT is equivalent
to the statement that every planar bridgeless graph is 4-colourable. Certainly if
every bridgeless planar graph is 4-colourable then every bridgeless cubic planar
graph is 4-colourable.

For the converse, let G be a bridgeless planar graph and assume that all
bridgeless cubic planar graphs are 4-colourable. We will show a method of
constructing a cubic graph from G.
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Since G is bridgeless we know for any vertex v of G that deg(v) ≥ 2. Sim-
ilarly, if G contains a vertex v of degree 2 incident with edges x and y, we
subdivide x and y, denoting the subdivision vertices as u and w respectively.
We now remove v, identify u with one of the vertices of degree 2 in a copy of
the graph K4 − e and identify w with the other vertex of degree 2 in K4 − e.
Observe that each of the vertices so added has degree 3. If G contains a vertex
v0 of degree n ≥ 4 incident with edges x1, x2, ..., xn arranged cyclically about
v0, we subdivide each xi introducing a new vertex vi. We then remove v0 and
add new edges v1v2, v2, v3, ..., vn−1vn, vnv1. Again, each of the vertices so added
has degree 3.

Denote the bridgeless cubic planar graph resulting from this process as G′.
Clearly identifying in G′ all vertices in G′−G (ie. those added under the above
scheme), we arrive back at G. By hypothesis there is a 4-colouring of G′ and
indentifying vertices as described above induces a k-colouring of G with k ≤ 4,
which completes the proof.2

�

Example 1.4.1. The process described above is easily understood using pic-
tures. Following the notation of the previous theorem, for vertices of degree 2
and n ≥ 4 we can see how each is replaced by vertices of degree 3.

Before After

v
x y

w
y

u
x

v0

x1

x2

x3x4

x5

v1

x1

v2

x2

v3

x3

v4

x4

v5x5

2I found Harary’s wording of the main body of this proof very clear, so reproduce it here.
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Having demonstrated that the 4CT is equivalent to the statement that every
bridgeless cubic planar graph is properly 4-vertex colourable, we are closing in
on the snark. We use another theorem of Harary to bring it it within our grasp.

Theorem 1.4.1. (Harary [4] p. 134) The 4CT is equivalent to the statement
that every bridgeless cubic planar graph is 3-edge colourable.

Proof. We have seen by Lemma 1.4.1 that the 4CT is equivalent to the statement
that every bridgeless cubic planar graph is properly 4-vertex colourable (or
simply 4-colourable).

First assume G = (V,E) is a bridgeless cubic planar graph with a 4-vertex
colouring φV : V → K where K is the set of elements of the Klein four-group
where addition is defined ki + ki = k0 and k1 + k2 = k3 with k0 the identity
element. Let φE : E → K \{k0} be an edge-colouring of G defined by the group
sum φE(e) = φV (x) + φV (y) where x and y are the endvertices of e an edge in
G. It is immediate by the properness of φV that φE is a 3-edge colouring3 and
hence the chromatic index of G is three, as required4.

For the converse, first let G be a bridgeless cubic planar graph with chromatic
index 3 and colour it with eg. φE as above. To colour the “regions” of G
(considering it as a planar map as in Definition 1.2.1) select a region R0 and
colour it k0. To colour an arbitrary region R, draw a curve C from the interior
of R0 to the interior of R that doesn’t pass through any vertex of G and assign
the colour to be the sum under group addition of φE(e) for all edges e incident
with C. Call this colouring φR.

To see that the colours assigned to regions under this scheme will be the same
regardless of our choice of C and only depends on our choice of R0 (ie. that this
colouring is well-defined), consider a closed simple curve S that doesn’t pass
through a vertex of G. Observe that if c(v) denotes the the sum of the colours
of edges incident with a vertex v, then c(v) = k1 + k2 + k3 = k0. Let SV be the
set of vertices interior to the closed curved S, now we have

∑
v∈SV

c(v) = k0.
Let c1, .., cn be the colours of the edges incident with S and let d1, ..., dm be the
colours of the edges interior to S. Because every edge for a di is incident with
exactly 2 vertices in SV and every edge for a ci is incident with exactly 1 vertex
in SV , under Klein four-group addition we know that∑

v∈SV

c(v) = c1 + · · ·+ cn + 2(d1 + · · ·+ dm) = c1 + · · ·+ cn = k0.

To complete the proof, note that since under eg. φE no edge is coloured k0,
no two regions sharing a border will be assigned the same colour under φR.

�

3By hypothesis φV is a proper vertex colouring, so any adjacent vertices u and v will have
the property φV (u) 6= φV (v) and hence φV (u) + φV (v) 6= k0.

4Since G is cubic we know χ′(G) ≥ 3 and having shown there is a 3-edge colouring of G we
know χ′(G) ≤ 3 hence χ′(G) = 3.
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Example 1.4.2. The picture below shows an example of how vertex colouring
φV maps to edge colouring φE in the proof of Theorem 1.4.1.

φV φE

k1

k0

k2k3

→

k1

k3k2

Example 1.4.3. To clarify the Klein group sum used in the proof of Theorem
1.4.1, we can illustrate the incidence and interiority of edges (interior, twice
counted edges coloured di are drawn thick) and vertices in relation to the closed
curve S (drawn light grey) as follows.

d2

d1

c2

d0

c1
c0

d5
d4

c5

d3

c4
c3

d8
d7

c8

d6
c7

c6

S

Now we may present the result that was promised at the beginning of this
chapter and motivate our study of the snark.
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Corollary 1.4.1. The 4CT is equivalent to the statement that there are no
planar snarks.

Proof. This follows immediately from Theorem 1.4.1. A planar snark would be
a bridgeless cubic planar graph that was not 3-edge colourable, a contradiction.

�
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Chapter 2

The rarity of the snark

Since the naming of the snark by Gardner1 in [7] its defintion has undergone
some refinement (eg. [6], [11], [12], [13]) in order to preclude trivial examples
from snarkdom. To talk more precisely about the snark, we use recently writ-
ten definitions from the 2012 paper of Brinkmann, Goedgebeur, Hägglund &
Markström [13]. In these definitions, a graph G is uncolourable if χ′(G) = 4
(as in [6]).

2.1 Definitions
Definition 2.1.1. The girth of a graph is the number of vertices in a shortest
cycle in G and is denoted g(G).

Definition 2.1.2. A digon is a 2-cycle.

Definition 2.1.3. A graph G is cyclically k-edge connected if the deletion
of fewer than k edges from G does not create two components both of which
contain at least one cycle. The largest integer k such that G is cyclically k-edge
connected is called the cyclic edge-connectivity of G and is denoted λc(G).

Definition 2.1.4. A weak snark is an uncolourable cyclically 4-edge con-
nected cubic graph with girth at least 4. A snark is an uncolourable cyclically
4-edge connected cubic graph with girth at least 5.

We further define a trivial snark to be the snark that we arrived upon at the
end of the previous chapter in Corollary 1.4.1 (ie. an uncolourable cubic graph
without restrictions on cyclic connectivity or girth). Note that all snarks are
weak snarks and all weak snarks are trivial snarks.

In the preceding definitions, restrictions are placed on the girth and cyclic
edge connectivity of a graph for it to be considered a snark and not (merely)
a weak or trivial snark. In the following two sections we will examine and
1Gardner incidentally edited an annotated version of Carroll’s poem.

12



justify these conditions which originate in Isaacs [6] where “flower snarks” are
also introduced. We consider the construction of flower snarks in the following
chapter, Chapter 3.

2.2 Girth
As with connectivity (covered in Section 2.3) the motivation for putting the
lower bound on the girth of a snark G to g(G) > 4 can be seen in some sense as
an effort to preserve their rarity. In this section we shall see that snarks which
are trivial by virtue of their girth can always be reduced to a nontrivial snark
by performing simple operations.

Isaacs showed in 1975 that a trivial snark |G| = n with digons, triangles or
squares can easily be altered to produce a snark |H| < n. Such a G is “trivially
similar” to the simpler snark H.

Lemma 2.2.1. Let G be a trivial snark with g(G) = k. We can always construct
an H with a subset of G’s vertices where χ′(H) = 4.

Proof. We will demonstrate individually for each of k ∈ {4, 3, 2}.

k = 2: Identify the vertices of the digon to a vertex v and then identify v with
either one of its neighbours.

k = 3: Apply the reverse process of that described in Theorem 1.4.1 (ie. the
identification of the vertices of the triangle).

k = 4: Remove the vertices of the square, leaving four vertices of degree two.
Add two edges between pairs of these vertices in such a way that all have
degree three. This case is also mentioned in Isaacs [6] (2.4.1).

It is sufficient for this proof to simply remove digons, triangles and squares,
since, being themselves colourable, none of these parts of the graph is that
which induces the graph as a whole to be uncolourable.

�

Similarly, it is easy to add digons, triangles and squares to a snark to produce
arbitrarily many trivial snarks. Clearly any edge of a snark can have a digon
introduced to it without causing the graph to become colourable. Similarly,
since the snark is cubic, the process described in Lemma 1.4.1 can by applied
to any vertex to produce a triangle. Example 2.2.2 shows how one might add a
square to a snark without affecting its uncolourability.
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Example 2.2.1. We can form a trivial snark by adding a digon and a triangle
to a 4-edge coloured Petersen graph, a nontrivial snark. Clearly, reversing this
process amounts to the reduction of a trivial snark as described above.

α

βγ

γ

→

α

βγ

γ γ

α

β

α

γβ

Example 2.2.2. To add a square to a snark, select two edges that bear the
same colour, in each introduce two vertices, connect them pairwise. It is easy
two see this configuration will be edge colourable using three colours.

α α →

γ

γ

α α

β β

α α
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2.3 Connectivity
Another idea introduced by Isaacs to limit what should be considered a snark
is that of decomposition, where a k-cyclic edge connected snark is shown to
decompose into at least one simpler snark when k ≤ 3. We present his proof in
modified language that the decomposition of a trivial snark yields at least one
simpler snark.

Definition 2.3.1. Let G be a trivial snark with cyclic connectivity k ≤ 3. We
will decompose G into two cubic graphs G0 and G1. If G has a 2-edge cut,
take it and add an edge to each component connecting the two vertices of degree
two, consider each component a graph, G0 and G1. If G has a 3-edge cut, take
it and for each component add an isolated vertex v0, v1. Join vertices in each
component having degree two to vi and consider each component to be a graph
G0, G1. The graphs G0 and G1 are the decomposition of G.

Isaacs shows in [6] (2.3.4) that every colourable graph G (with colouring φ)
has a hamiltonian cycle, and if G has a 2-edge cut those edges will have the
same colour under φ. It is also shown that if G has a 3-edge cut, its edges will
take distinct colours under φ. This result is not proved here, but is used in the
proof below.

Lemma 2.3.1. Any trivial snark G with cyclic connectivity k ≤ 3 has a decom-
position G0, G1 at least one of which is a trivial snark.

Proof. First suppose G has a colouring, say φ. If G has a 2-edge cut its edges
will have the same colour, say α. Let e and e′ be the edges added in the de-
composition of G and set φ(e) = φ(e′) = α and both G0 and G1 are colourable
under φ. If G has a 3-edge cut, say {xx′, yy′, zz′}, and its decomposition in-
troduces edges {xa, ya, zy}, since we know φ(xx′) 6= φ(yy′) 6= φ(zz′) we can
set φ(xa) = φ(xx′), φ(ya) = φ(yy′) and φ(za) = φ(zz′) to make φ colour the
decomposition of G.

Conversely, suppose that G0 and G1 arising from the decomposition of G
are coloured under φ0 and φ1. Relabelling the colours in φi (by [6] 2.3.4) we can
use it as a colouring for G. Hence, if G is not colourable then its decomposition
is not colourable.

�
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Example 2.3.1. We show the decompositions of the “trivialised” Petersen
graph used in Example 2.2.1 to return to a nontrivial snark, first by taking
a 2-edge cut we write (where dashed lines denote the edge cut)

→ G0 = , G1 = .

Subsequently taking the 3-edge cut of H = G0 we write a second decomposition

→ H0 = , H1 = .

Clearly H0 is the Petersen graph. Note that the decompositions above are trivial
in themselves, since reduction would produce the same result.

We have seen how removing particular configurations of edges and vertices
from snarks allows us to better consider what makes the snark uncolourable.
In the next chapter, we will consider precisely such an example of a generally
uncolourable configuration.
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Chapter 3

Generating snarks

We conclude by considering the construction of the infinite family of snarks
discovered by Isaacs in 1975, the flower snarks. This construction demonstrates
how isolating a particular configuration of edges and vertices which can be
“composed” with copies of itself in such a way that the resulting graph will
always be uncolourable.

Isaacs construction is simple and uses a graph fragment (which he calls a
“pendant graph” [6]), two copies of which are depicted below1.

· · · u1 v1
o1

x1

·v1 v1·

·u1 u1·

·x1 x1·

· · · un vn
on

xn

·vn vn·

·un un·

·xn xn·

· · ·

An odd number of such fragments are arranged cyclic fashion where all but
one pairs are joined in the obvious way (ie. edges are uiui+1, vivi+1, etc), the
pair completing the cycle being connected by edges xnx1, unv1 and vnu1. Isaacs’
proof that such a graph is uncolourable is also simple.

Proof. We consider, when ·ui, ·vi and ·xi are coloured a particular way, the
possibilities for the colours of ui·, vi· and xi·. We will call these incolours
and outcolours respectively and denote each case with an ordered triple from
{a, b, c}. Having either incolours or outcolours (a, a, a) is impossible since one
of the edges vioi, uioi, xioi must be coloured a. A pattern of incolours with
two colours (one featuring twice) produces outcolours where the third colour
features twice. For example (a, a, b) can give either (c, b, c) or (b, c, c). This
1We use the notation u· and ·u to mean an edge incident with vertex u, connected to an
as-yet-undecided vertex.
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alternates as we proceed with construction, so an odd number of composed
fragments leads to edges with the twice-featuring colour meeting at the same
vertex, thus our graph cannot be coloured in this way. Lastly, incolours (a, b, c)
give outcolours that are a rotation of the elements of the triple that preserves
their order, but by the unv1 and vnu1 “crossover” edges that complete our cycle
of graph fragments, these incolours also give rise to uncolourability.

Therefore, a graph constructed as described is not colourable.

�

Example 3.0.1. (a, a, b) incolours

a

b

a

a c

b

b

c

c

b c

a

a

a

b

Example 3.0.2. (a, b, c) incolours

a

b

c

a c

b

c

b

a

b a

c

c

a

b
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Chapter 4

Conclusion

We have seen how the snark arose naturally from the study of map colouring
problems and was named just as the 4CT was proved. We have also seen how
the snark has established itself as a mathematical object worthy of study in
its own right, with refinements to its definition following discoveries about its
properties. We have considered Isaacs’ construction of an infinite family of
snarks. Future study relating to reducibility, etc. of the snark may yield further
infinite families and a deeper understanding of how graph structure relates to
colourability.

A snark on 44 vertices [14]
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